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Abstract

In this paper we propose an image segmentation algo-

rithm that combines region merging with spectral-based

techniques. An initial partitioning of the image into

primitive regions is produced by applying a region merg-

ing approach which produces a chunk graph that takes

in attention the image gradient magnitude. This ini-

tial partition is the input to a computationally efficient

region segmentation process that produces the final seg-

mentation. The latter process uses a multi-class par-

tition that minimizes the normalized cut value for the

region graph. We have efficiently applied the proposed

approach with good visual and objective segmentation

quality results.

1. Introduction

In a conventional sense, image segmentation is the
partitioning of an image into regions, in a manner con-
sistent with human perception, where parts within a
region are similar according to some uniformity prop-
erty and dissimilar between neighbouring regions. Al-
though being a key research field in various domains,
image segmentation is still on its research stage.

Spectral-based segmentation treats image segmenta-
tion as a graph partitioning problem. These methods
use the eigenvectors of a matrix representation of a
graph to partition image into disjoint regions with pix-
els in the same region having high similarity and pixels
in different regions having low similarity. A common
characteristic among these techniques is the idea of
clustering/separating pixels or other image elements
using the dominant eigenvectors of a n× n matrix de-
rived from the pair-wise similarities, as measure by one
or more cues, between pixels where n denotes the num-
ber of pixels in the image. It thus segments an image
from a global point of view.

One major issue for segmentation methods based on
graph representations is the size of the corresponding
similarity matrix. If the node set V contains the pixels
of an image, the size of the similarity matrix is equal to
the squared number of pixels, and therefore generally
too large to fit into computer memory completely (e.g.
for an image of 481 × 321 pixels — the size of the
images from the Berkeley Segmentation Dataset [3] —
the similarity matrix contains ≈ 23.8 × 109 cells).

In this paper we propose a method that immensely
reduce the problem size by replacing the individual pix-
els with micro regions in order to reduce the number
of nodes in the graph. However, it is very important
that the atomic regions will already yield a meaningful
segmentation, i.e. the atomic regions must be homoge-
neous and the edges contained in the image must cor-
respond to segment boundaries. The basic idea of the
method resembles the perceptual grouping task: aban-
doning pixels as the basic image elements, we instead
use small image regions (atomic regions) of coherent
structure to define the corresponding graph representa-
tion. By treating regions as the elementary unit for im-
age processing, we can reduce the computational com-
plexity without a corresponding loss of accuracy. In
fact, it can be argued that this is even a more natural
image representation than pixels as those are merely
the result of the digital image discretization. The real

world does not consist of pixels!

This paper proposes a combined two-stage approach
for image segmentation considering both local homo-
geneity and global information. The first stage is a
gradient-based region merging algorithm and provides
over segmented, but homogeneous regions. It produces
a chunk graph where each chunk (or subgraph) corre-
sponds to a micro region. In the second stage, these
micro regions are used to construct a graph represen-
tation of the image, which is processed by a discrete
multi-class normalized cut algorithm. The new crite-
rion takes joint advantage of these two methods, aim-
ing to combine the best qualities of both segmentation
approaches, giving a final segmentation that is more
visually appropriate.

2. Overview of the Method

In this paper, we present a new method that sig-
nificantly improves the normalized cut performance by
allowing the introduction of small regions (atomic re-
gions) instead of pixels on the calculation of similarity
matrix. This approach integrates region merging with
spectral-based clustering as follows:

1. Initialize the graph where each node correspond
to a pixel in the image;

2. Image is pre-segmented into sets (chunks) of con-
nected pixels, in no particular order, using a gra-
dient based region merging algorithm;
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3. Construct the final similarity graph where each
node corresponds to a chunk (atomic region) in
the chunk graph;

4. Calculate the statistics of all the atomic regions;

5. Use a multi-class normalized cut process in order
to obtain the final region-based segmentation.

3. Multi-class Normalized Cut

Spectral-based methods use the eigenvectors and
eigenvalues of a matrix derived from the pairwise sim-
ilarities of pixels. The problem of image segmentation
based on pairwise similarities can be formulated as a
graph partitioning problem in the following way: con-
sider the weighted undirected graph G = (V, E, W )
where each node vi ∈ V corresponds to a pixel, and the
edges E connect pairs of nodes. A weight wi,j ∈ R

+
0 is

associated with each edge based on some property of
the connected pixels (e.g., the difference in intensity,

intervening contours and location). Let Ψ = {Vi}
k
i=1

be a multi-class disjoint partition of V such that V =
∪k

i=1Vi and Vi ∩ Vj = ∅, i �= j. Image segmentation is
reduced to the problem of partitioning the set V into
disjoint non-empty sets (V1, .., Vk), such that similarity
among nodes in Vi is high and similarity across Vi and
Vj is low.

The normalized cut segmentation criterion was in-
troduced by Shi & Malik in [6] for segmentation with
k = 2 regions. Let VA, VB be two disjoint sets of the
graph VA∩VB = ∅. We define links (VA, VB) to be the
total weighted connections from VA to VB :

links (VA, VB) =
∑

i∈VA,j∈VB

wi,j

The intuition behind the normalized cut criterion
is that not only we want a partition with small edge
cut, but we also want the subgraphs formed between
the matched nodes to be as dense as possible. This
latter requirement is partially satisfied by introducing
the normalizing denominators in the NCut equation.
The normalized cut criterion for a bipartition of the
graph is then defined as follows:

Ncut (A, B) =
links (A, B)

links (A, V )
+

links (A, B)

links (B, V )
(1)

This formulation allows to decompose the problem
into a sum of individual terms, and formulate a dy-
namic programming solution to the multi-class normal-
ized cut (kNCut). So, the NCut problem is naturally
extended to a kNCut, finding a partition Ψ that min-
imizes the objective function

kNCut (Ψ) =
links

(
V1, V1

)

links (V1, V )
+ ...+

links
(
Vk, Vk

)

links (Vk, V )
(2)

where Vi represents the complement of Vi.
Let D = diag (D1, ..., Dk) be the n×n diagonal ma-

trix such that Di is given by the sum of the weights

of all edges on node i: Di =
∑k

j=1 Wij . It is easy to
verify that

links
(
Vi, Vi

)
= Di − Wii and links (Vi, V ) = Di

The multi-class partitioning problem can be formu-
lated in terms of an indicator matrix. A multi-class
partition of the nodes of G is represented by an n × k

indicator matrix X = [x1, ..., xk] where X (i, l) = 1 if
i ∈ Vl and 0 otherwise. Since a node is assigned to one
and only one partition there is an exclusion constraint
between columns of X : XIk = In.

It follows that

kNCut (Ψ) =
x

T

1 (D − W ) x1

xT

1
Dx1

+ ... +
x

T

k (D − W )xk

xT

k
Dxk

= k −

�
x

T

1 Wx1

xT

1
Dx1

+ ... +
x

T

k Wxk

xT

k
Dxk

� (3)

subject to XT DX = Ik.
The optimal solution for the generalized Rayleigh

quotients that compose Eq. (3) is the set of eigenvec-
tors X associated with the set of the smallest eigenval-
ues Θ = {0 = ν1 ≤ ... ≤ νk} of the system

(D − W )X = ΘDX (4)

Unfortunately, this problem is NP-hard [6] and
therefore generally intractable. If we ignore the fact
that the elements of xi are either zero or one, and allow
them to take continuous values, by using the method
of Lagrange multipliers Eq. (4) can be expressed by
the standard eigenvalue problem. Let yi = D1/2xi

and Y = [y1, y2, ..., yk]. If Y is formed with any k

eigenvectors of the normalized graph Laplacian ma-
trix1 W̃ = D−1/2WD−1/2, then

W̃Y = Y Λ (5)

subject to Y T Y = Ik, where Λ is the k × k diagonal
matrix formed with the eigenvalues corresponding to
the k eigenvectors in Y . Λ = {1 = λ1 ≥ ... ≥ λk} with
λi = 1 − νi. These k eigenvectors must be distinct to
satisfy Y T Y = Ik. This means that

Y T W̃Y = Y T Y Λ = IkΛ = Λ (6)

and the trace of Y T W̃Y is the sum of the eigenvalues
corresponding to the k eigenvectors in Y . It follows
from Fan’s Theorem [1] that this sum is maximized
when Y is taken to by any orthonormal basis for the
subspace spanned by the eigenvectors corresponding to

the k largest eigenvalues of W̃ . From this we arrive at
the following relaxed optimization problem

min
XT DX=Ik

kNCut (Ψ) = k − max
Y T Y =Ik

trace

�
Y

T�WY

�
(7)

The relationship between the Laplacian matrix W̃

and the Markov random walk transition matrix P was

1Although the Laplacian matrix is usually represented by I−

�W , replacing �W with I −
�W only changes the eigenvalues (from

λ to 1 − λ) and not the eigenvectors.
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presented by Meila & Shi [5]. The stochastic transi-
tion matrix P is obtained by normalizing the similarity
matrix in order to the rows sums are all 1 (the degree
matrix of P = D−1W is the identity matrix).

Equation (5) can be transformed into a standard
eigenvalue problem of,

PZ = ΛZ (8)

where the eigenvectors of P are related with the eigen-
vectors of W̃ by Z = D−1/2Y .

Z = [z1, ..., zk] is an n×k matrix formed by stacking
the k largest eigenvectors of the eigensystem from Eq.
(8) in columns. The continuous solution X̃ is obtained
from Z by renormalizing each of Z’s rows to have unit
norm.

X̃ = Z
(
ZT Z

)−1/2
(9)

Recovering a discrete solution X from the continu-
ous solution X̃ is however a complex task. To over-
come this problem, a majority of the theoretical work
on spectral methods have dealt with successive bipar-
titioning generating 2k partitions [6]. To obtain a dis-
crete solution we follow the approach presented by Yu
& Shi in [7].

4. Building the Chunk Graph

The normalized cut criterion considers global sim-
ilarity relationships between nodes of a graph. This
effect is achieved by constructing a fully connected
graph. However, considering all pairwise pixel rela-
tions in an image may be too computational expen-
sive. Unlike other famous clustering methods [6, 7]
which use all pixels to construct a graph, our method
is based on selecting edges from a chunk graph where
each node corresponds to a set of homogeneous pixels.

Definition 1 (Chunk graph): A chunk graph G′ =
(V ′, E′) for a graph G is as follows: Each node of G′

represents a chunk, which is a subset of G; each chunk

corresponds to a set of homogeneous pixels; chunks on

G′ are disjoint and their union is G.

Therefore, we transform graph G = (V, E) into a
new graph G′ = (V ′, E′), where E′ ⊆ E. Graph G′

is composed by a set of subgraphs (chunks) that fol-
low the normalized cut criterion in their construction.
This means that edges between two nodes in the same
chunk should have relatively high similarity weights,
and edges between nodes in different chunks should
have lower similarity weights.

In the following discussion, we denote nodes of graph
G′ using vi and vj , and use eij to represent the edge
connecting nodes vi and vj . An edge eij is labelled
according to the absolute difference of the mean inten-
sities of nodes vi and vj . A merge, M (i, j), is a graph
transformation operation that merges the nodes vi and
vj . The procedure of node merging is actually to inte-
grate two or more chunks into a bigger one. It is also
called an edge contraction as the edge eij is removed.
The graph G is transformed in a new graph G′ that
has node vi and all other nodes of G except node vj .

Graph G is initially set to represent the 8-neighbour
of pixels in the image. Since we want to find sets of
homogeneous nodes the processing order of the nodes
is not important. The edges corresponding to connec-
tions between homogeneous nodes are removed. The
resulting graph G′ contains nodes that represent ho-
mogeneous atomic regions in the image.

By the above definition, a merge always reduces the
total number of regions. This merge process is guar-
anteed to converge. A decision function, called the
merge criterion determines whether two chunks should
be merged. Basically, this merge criterion measures the
strength of the boundary between two regions by com-
paring two quantities: one based on intensity differ-
ences across the boundary, and the other based on in-
tensity differences between neighbouring pixels within
each region. We define two measures

Inw (A) = max
eij∈N8(A,E)

wij

Outw (A, B) = min
vi∈A,vj∈B,(vi,vj)∈E

wij

where A and B are regions, Inw (A) is the internal vari-
ation within the region, N8 (A, E) are the 8-neighbours
of A, and Outw (A, B) is the external variation between
regions A and B.

We merge together regions when the external varia-
tion between them is small regard to their respective
internal variations

Outw (A, B) ≤ MInw (A, B)

with

MInw (A, B) = min (Inw (A) + τ (A) , Inw (B) + τ (B))

where the threshold value τ (A) = α/|A| determines
how large the external variation can be, with regards
to the internal variation, to still be considered similar,
α is some constant parameter, and |A| is the size of A.

5. Implementation Issues

Images are first convolved with Gaussian oriented
filter pairs to extract the magnitude of orientation en-
ergy (OE) of edge responses, as used by Malik et al.

in [2]. At each pixel i, we can define the dominant
orientation as θ∗ = argmax OEθ and OE∗ as the cor-
responding energy. The value OE∗ is kept at the lo-
cation of i only if it is greater than or equal to the
neighbouring values. Otherwise it is replaced with a
value of zero.

For computational consideration, it is important to
sort and label all the regions created by the initial seg-
mentation: 1) For each region ri, spatial location xi is
computed as centroids of their pixels. If the region is
convex, the centroid is inside of it, but if the region is
concave, the centroid is situated in the corresponding
location of the nearest boundary pixel of that region.
2) For each region ri, mean intensity µi is the arith-
metic sum of the intensity of each pixel divided by the
amount of pixels of that region. 3) For each pair of
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nodes, similarity is inversely correlated with the max-
imum contour energy encountered along the path con-
necting the centroids of the regions. A large magni-
tude indicates the presence of an intervening contour

[2] and suggests that the regions do not belong to the
same group.

The core computational technique of the normalized
cut algorithm is the eigenvalue problem of Eq. (8). It
requires the solution to a large sparse system of sym-
metric equations. The LANCZOS algorithm provides
of an excellent method for approximating the eigenvec-
tors corresponding to the smallest or largest eigenval-
ues of a sparse matrix.

6. Results and Evaluation

To provide a numerical evaluation measure and,
thus, allow comparison with other methods, the al-
gorithm was evaluated against the Berkeley Segmen-
tation Dataset [3]. This database comprises a ground
truth of 100 hand-segmented images to compare the
segmentation outputs. The task is cast as a boundary
detection problem, with results presented in terms of
Precision (P) and Recall (R) measures.

In probabilistic terms, precision is the probability
that the result is valid, and recall is the probability
that the ground truth data was detected. The two
statistics may be distilled into a single figure of merit:

F =
PR

βR + (1 − β)P
, (10)

where β determines the relative importance of each
term. Following [4], β is selected as 0.5, expressing no
preference for either.

A selection of typical results is presented in Fig. 1.

(a) Image 42049 (b) Image 118035

Figure 1: Results overlapped on original images.

The algorithm provides a binary boundary map
which is scored against each one of the hand-segmented
results of Berkeley Dataset, producing a (R, P, F )
value. The final score is given by the average of those
comparisons. These quantitative results are summa-
rized in Table 1 for a set of tested images. We identify
each image with the id number presented in [3].

It is also interesting to note that from comparison
with image 189080 with human results we obtain for
one of them F = 0.77. The difference in final score
come from the disagreement among different human
subjects about the correct image segmentation.

Table 1: Results of quantitative experiment in terms of
Recall(R), Precision(P) and F-measure. FH represents
the F-measure between hand-segmented results.

images R P F FH

24063 0.73 0.72 0.73 0.83

42049 0.85 0.93 0.89 0.92

118035 0.57 0.84 0.68 0.83

135069 0.93 0.87 0.90 0.97

189080 0.74 0.59 0.68 0.85

241004 0.75 0.78 0.77 0.95

296059 0.57 0.85 0.68 0.95

In a set of 10 tested images, the reduction obtained
on the number of nodes using the chunk graph G′ is
about 87% of the nodes in graph G.

7. Conclusion

This paper shows that good segmentation results can
be achieved when using a combined approach between
region merging and graph-based methods. Using small
atomic regions instead of pixels leads to a more nat-
ural image representation - the pixels are merely the
result of the digital image discretization process, and
do not occur in the real world. In comparison to pixel-
based methods, the reduction obtained on the number
of nodes using chunk graphs is about 87%.

As a future work, we plan to investigate other strate-
gies for generating atomic regions and we will ex-
plore how the interaction between this generation and
the segmentation components can improve the perfor-
mance of such a system as a whole.
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