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Abstract 

Evaluation of scoliosis is performed traditionally by 
means of standing posterior-anterior radiographs of the 
full spine to assess lateral curvature with the Cobb 
method. In this paper, we present a new automatic algo-
rithm to measure Cobb angle by using nuclear medicine 
whole body bone scan images. Our algorithm design is 
based on the fuzzy sets histogram thresholding, anatomi-
cal knowledge-based image segmentation method, and 
morphology technology. It is expected that the results may 
help physicians to diagnose scoliosis via the scintigraphy 
images, and thus to reduce radiation done to patients. 

1 Introduction 

Scoliosis is defined as the lateral deviation of spinal 
curve in the coronal plane. The Cobb angle has become 
the basis for quantifying scoliosis curve magnitude [1-2]. 
The most tilted vertebral bodies above and below the apex 
of the spinal curve are used to create intersecting lines that 
produce the curve degree as shown in Figure 1. This defi-
nition is controversial, and patients do not exhibit 
clinically significant respiratory symptoms with idiopathic 
scoliosis until their curves become 60 to 100 degrees. Ra-
diographic examination is the imaging modality that is 
generally employed to describe spine curves by their ap-
pearance on plain films and quantified by the magnitude 
of the Cobb angle derived from the radiograph. 

In order to reduce the risk of breast cancer caused by 
multiple diagnostic x-rays during childhood and adoles-
cence [3], many non-invasive Cobb angle measurement
methods were developed [4]. The main non-invasive 
technologies include the uses of the Scoliometer (SCOL), 
back-contour device (BCD), and moiré topographic im-
aging (MTI). Amend et al [5] showed that the SCOL 
method has a good reproducibility, but the correlation for 
the measurement of lateral curvature was low. The back 
surface characteristics are similar to the use of BCDs [6-9]. 
The BCD consists of a level frame through which passes a 
series of movable rods. These rods may be locked in posi-
tion to record the contour of the opposing back surface of 
the patient in the forward-bending position. A complete 
surface contour of a subject’s back can be reproduced 
from an MTI [10-11], but this is a complex procedure re-
quiring much expertise. 

Stocks et al [12-13] adopted a computer-aided diagno-
sis (CAD) algorithm to minimize human involvement in 
Cobb angle measurement and, in King et al classification, 
identify potential sources of classification errors. They 
marked four points on each vertebral body and, two points 

on the sacrum, as determined from the landmarks by the 
computerized algorithm, the curve pattern was automati-
cally classified. 

Our motivation of this study is to evaluate scoliosis by 
nuclear medicine whole body bone scan. Most patients 
with scoliosis will perform bone scan to exclude any focal 
bony abnormalities [14]. At the same time, we can meas-
ure the Cobb angle automatically by our algorithm to 
measure lateral curvature, which may potentially prevent 
patients from receiving additional routine x-ray exposures. 

Figure 1.  Illustration of the Cobb angle measurement 
by Cobb method. 

2 Method and materials 

Our algorithm contains preprocessing, image segmenta-
tion, and automatic Cobb angle measurement. The first 
step includes a) removing the noise outside the body re-
gion; b) applying Gaussian smoothing to compress the 
influence of noise inside the body region; and c) adopting 
histogram equalization method to enhance the image qual-
ity. The second step is to segment the back region 
including vertebrae and ribs from the whole body bone 
scan. The third step is the automatic Cobb angle meas-
urement. 

The images of nuclear medicine whole body bone scan
in anterior view and posterior view were obtained by a 
dual-head gamma camera [15]. Figure 2a shows the poste-
rior view of a whole body bone scan. 

2.1 Preprocessing 

The noise outside the body region were clearly demon-
strated on an over adjusted bright image (Figure 2a). The 
histogram of the image revealed a deep valley between 
two peaks at the low gray level area (Figure 2b). A thresh-
old value at valley of the histogram was applied to
eliminate noise. The noise inside the body region was re-
moved by applying an isotropic Gaussian filter with a 
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standard derivation of 1.4. Finally, a histogram equaliza-
tion method was applied to improve the image quality by 
the following equation: 

max
0

( ) ( ) .
AI

A Af I G p u du             (1) 

AI  is the input image, maxG  is denoted as the maxi-
mum value in the gray-level scale, and )(upA  is the 
probability mass function of input image. 

(a)                   (b) 

Figure 2.  (a) The posterior view of a whole body bone 
image with noises outside the body frame. (b) The his-
togram of a whole body bone in posterior view. 

2.2 Image segmentation 

The purpose of image segmentation was to segment the 
back region which includes vertebrae and ribs apart from 
the posterior whole body bone scan. It will facilitate the 
processing in the automatic Cobb angle measurement 
procedure. 

2.2.1 Fuzzy sets histogram thresholding 

To locate the typical reference points in skeleton, the 
pixels of soft tissue should be compressed and those of 
bone around typical reference points be reserved. By using 
fuzzy sets on histogram thresholding, Tobias and Seara 
demonstrated successfully in separation background from 
object in multimodal and bimodal histogram images [16]. 
We applied this algorithm to classify soft tissue and bone 
regions. This algorithm can be summarized as follows. 

The fuzzy set A is characterized by the func-
tion )( iA x , the S-function is used for modeling the 
membership function. This function is defined as below: 
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The parameter b denotes the crossover point, which is 
given by 2/)( cab , with 5.0SA ; the bandwidth 
is defined as .b b a c b  The Z-function, 
which is derived from the S-function as below: 

( ) ( , , , ) 1 ( , , , ).A Z x Z x a b c S x a b c      (3) 

By using the IF introduced by Kaufman [17], we can 
determine how compact the set it is as compared with its 
nearest ordinary set, and is given as: 
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This index is obtained by measuring the distance be-
tween A and A , and is defined as: 

1/
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              (5) 

The ( , )kd A A  is a measurement of distance, and n is 
the number of elements in A . Such a distance calculation 
can be simplified as follows: 
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Two linguistic variables {soft tissue, bone} modeled by 
two fuzzy subsets of U, denoted by S and B, respectively. 
The fuzzy subsets S and B are associated with the histo-
gram intervals ],[ min jxx  and ],[ maxxxr , respectively, 
where jx and rx  are the final and initial gray level limits 
for these subsets; the minx  and maxx  are the lowest and 
highest gray levels of the image, respectively. The gray 
levels in each of these subsets have the intuitive property 
of belonging with certainty to the final subsets object (O)
or background (F). That is, FS  and OB . With 
these subsets, a seed for starting the similarity measure 
process was obtained. To obtain the segmented version of 
the gray level image, each gray level of the fuzzy region 
has to be classified as object (bone) or background (soft 
tissue). For classification procedure, a gray level picked 
from the fuzzy region was added to each of the seed sub-
sets. By measuring the IF’s of the subsets }{ ixS  and 

}{ ixB , the ix  was assigned to the subset with lower IF 
with the maximum similarity. By applying this procedure 
for all gray levels of the fuzzy region (Figure 3), each 
pixel was classified into object or background subsets. 
The proposed classification method performs the com-
parison of IF measures, we need to normalize those 
measures. This is archived by first computing the IF’s of 
the seed subsets S and B, and by computing a normaliza-
tion factor  according to the following relation: 

( ) / ( ).k kS B               (7) 

Where )(Sk  and )(Bk  are the IF’s of the subsets 
S  and B , respectively. Figure 3 shows how the 
normalization works. The thresholding result of 
scintigraphy in posterior view was illustrated in Fig 4a, 
and was denoted as 

fuzzy

PAI .

Figure 3.  Illustrations of image histogram, character-
istic functions for the seed subsets, normalization step 
(dotted lines) of the indices of fuzziness, and determi-
nation of the threshold value. 
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 (a)                (b) 

Figure 4.  (a) The posterior view of a thresholded 
whole body bone image with reference points. (b) The 
segmented region including vertebrae and ribs. 

2.2.2 Locate reference points 

After performing the fuzzy sets histogram thresholding, 
the Fuzzy

PAI image was adopted to locate neck, shoulder, ver-
tebra, and pelvis reference points by anatomical 
knowledge [18]. 

From top to 25% height of the image in vertical direc-
tion, the image width formed by the most left and right 
margin was calculated in each row, the most left and right 
margins with minimum image width were defined 
as LNeckP and RNeckP for neck reference points, labeled as 
‘a’, ‘b’ in Figure 4a respectively. 

From LNeckP to 25% image height in vertical direction, 
the horizontal distances from left image extremity to the 
first pixel with a non-zero gray level were calculated for 
each row. Once the distance difference was greater three 
times than previous one, then the left apex of shoulder was 
located and was denoted as LShoulderP (labeled as ‘c’ in 
Figure 4a). The similar way was applied to locate the right 
apex of shoulder, and was denoted as RShoulderP  (labeled 
as ‘d’ in Figure 4a) 

Beginning from 30% to 50% image height in vertical 
direction, we determined the minimum width which was 
formed by the most left and right margins in a row, and 
marked the coordinates of margins to derive the vertebra 
reference points which were denoted as LVerP and 

RVerP (labeled as ‘e’, ’f’ in Figure 4a respectively). 
Downward form LVerP , the horizontal distances be-

tween the horizontal coordinate of LShoulderP  and the 
left-first non-zero gray level pixel was detected in every 
row. If the distance difference exceeded three times than 
previous one, then the left-top of pelvis was located. The 
right-top of pelvis was located with the similar way. We 
denoted the left-top reference point as LPelvisP  (labeled as 
‘g’ in Figure 4a), and right-top reference point as RPelvisP
(labeled as ‘h’ in Figure 4a). 

3 Automatic Cobb angle measurement 

As shown in Figure 4b, the region including vertebra 
and ribs was segmented apart from the whole body scan 
by the reference points of LShoulderP , RShoulderP , LPelvisP ,
and RPelvisP , then histogram thresholding using fuzzy sets 
as mentioned in 2.2.1 was applied in the segmented region 
again. Following, the image was converted from a gray 
level image into a binary image (Figure 5a). Figure 5b 
demonstrates the reverse image of Figure 5a. 

          (a)                  (b)

Figure 5.  (a) Illustration of the segmented binary im-
age. (b) The reverse binary image of (a), the margins of 
intervertebrae discs were pointed by arrow-type marks. 

Cobb angle is the angle subtended between lines drawn 
along the upper border of the most tilted vertebrae above 
the curve’s apex and the lower border of the most tilted 
vertebrae below the apex. Because the low-resolution 
characteristic of nuclear medicine whole body bone scan, 
it is hard to find the slant angle of each vertebrae body by 
itself. In another way, as shown in Figure 5b, the margins 
(pointed by arrow-type marks) of intervertebral discs in 
both sides were with a clear presentation. Hence we can 
adopt the two margins of every intervertebral disc to ob-
tain its slant angle. 

The exact positions of intervertebral disc margins can 
be obtained by applying an image thinning algorithm [19], 
which can be summarized as follows. The thinning of a set 
A by a structuring elements set {B}, denoted A {B}, can 
be defined in terms of the hit-or-miss transform: 

1 2... ... nA B A B B B       (8) 

Figure 6 demonstrates a set of structuring elements
commonly used for thinning method. 

Figure 6.  Illustration of the eight sequential structur-
ing elements used by thinning algorithm. 

After performing thinning processes in Figure 5a and 
Figure 5b, the results were shown in Figure 7a and Figure 
7b, separately. We combined the segmented region (Figure 
4b), the vertebrae trace (Figure 7a), and thinning image 
(Figure 7b) to a single image frame (Figure 7c), and it was 
found that the positions of intervertebral margins coincide 
with the anatomical structure significantly. 

As shown in Figure 7d, along the vertebrae trace, we 
connected the two symmetrical margins of every interver-
tebral disc to form a line for slant angle measurement. The 
slant angles of the most tilted vertebrae above the curve’s 
apex and the most tilted vertebrae below the apex were 
obtained, and denoted as aAng  and bAng , separately. 

Finally, Cobb angle can be found by the following 
equation: 

.ba AngAngangleCobb           (9) 
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         (a)                   (b) 

         (c)                   (d) 

Figure 7.  (a) The thinning image transferred from 
Figure 5a. (b) The thinning image transferred from Fig-
ure 5b. (c) The combined image of the back region, 
vertebrae trace, and Figure 7b. (d) The process of Cobb 
angle measurement. 

4 Results and conclusion 

In order to evaluate the proposed algorithm in this pa-
per, we implemented a program constructed by C

++

Builder 6.0, and performed experiments on an image da-
tabase from the department of nuclear medicine, Buddhist 
Tzu Chi General Hospital at Taipei. At 3 hours after intra-
venous injection of 

99m
Tc-MPD, the whole body bone scan 

images were acquired by a dual-head gamma camera (GE, 
infinia, USA). 

There were 11 random selected whole body scan im-
ages for testing, and were compared with the results 
obtained manually by an experienced physician (Figure 8), 
the mean difference was 4.14 degrees. 

Figure 8.  The comparison of our experiment results
with an experienced physician’s measurements. 

From the experiments, our algorithm performed with an 
acceptable result, it is possible to be applied in clinical 
application practically. 

Up to now, CAD applications in the field of nuclear
medicine whole body bone scan are still quite few. Based 
on the proposed approach, for the benefits of patients, it is 
expected to encourage developments of other new clinical 
applications in nuclear medicine field. 
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