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Abstract

An explicit snake is a smooth closed curve which
deforms towards the desired features in an image.
There are two types of force controlling the motion
of the snake: internal and external forces. The
former usually constrains the snake’s curvature
and tension, through first and second Tikhonov
smoothness force terms, while the latter generates
attraction forces. To investigate the possible role
of higher Tikhonov constraint parameters, third
and fourth force regularizing terms are added in
this study. The related theoretical equations are
derived and the respective influence of the four
internal force terms are examined and followed on
test images. While still at the preliminary stage,
the present study shows that the added internal
force terms may improve the smoothness and
convergence of the snake.

1 Introduction

An explicit snake model provides a unified solution
to a set of visual problems which were treated in
different ways in the past. In this model, edges,
lines and regions contours can be extracted by the
same mechanisms and as such is a powerful tool
for high-level image processing.

The first active contour, also called snake for its
characteristic motion over time, was proposed
by Kass, Witkin and Terzopulos[1] in the late
1980’s. Since then a significant number of studies
has been conducted to improve its behaviour
and resolve the problems related to its optimal
convergence. Cohen’s[2] balloon model is an
additional force which makes the snake inflate
or deflate. The Gradient Vector Flow model
proposed by Chenyang and Prince[3] computes
the external force as a diffusion of the gradient
vectors of a gray-level or binary edge map derived
from the image thus allowing convergence towards
concave objects. In 1993, Cohen L.D. and Cohen
I.[4] suggested using Chamfer distance to edge
points as external force. The basic ideas of these
solutions are to increase the capture range of the
external force, so that the initial snakes do not
necessarily lie very close to the regions of interests.

Almost all of the existing explicit snake models
have the same internal force which is composed of
the first and second Tikhonov smooth force terms.
Higher order Tikhonov smoothness force terms
could also have some effects on the snake internal
constraints dynamic behaviour but this has
never been investigated. Incidentally, Tikhonov
demonstrated that the minimisation of ill-posed
problems (such as extracting object contours from
an edge map) regularized by an infinite sum of
Tikhonov smoothing terms, of increasing order,
could lead to an optimal solution [5]. A first
step towards exploring these possible effects is
the addition of third and fourth order Tikhonov
smoothing terms to the snake internal constraint.
After a theoretical characterisation of these added
terms, the roles of the internal force terms are
examined.

2 Explicit snake

2.1 Model

An explicit snake (parametric snake) is a specific
type of deformable model, which is a mapping:

Ω = [0, 1] → R2

s �→ v(s) = (x(s), y(s))

Where s denotes the curvilinear abscissa and (x,y)
the Cartesian coordinates of the snake points. An
explicit snake model is defined as a space of admis-
sible deformations A and a functional E to min-
imize. This functional represents the energy of
the model which will be minimized and has the
following form:

E : A → R

v �→ Esnake(v) =

∫ 1

0

Esnake(v(s))ds

=

∫ 1

0

Eint(v(s)) + Eext(v(s))ds (1)

where

Eint = α(s)|vs(s)|
2 + β(s)|vss(s)|

2

+T (s)|vsss(s)|
2 + F (s)|vssss(s)|

2 (2)
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Eext = Eimage(v(s)) + Econstrain(v(s))

Assume v is a local minimum for E, equation (1)
leads to the following associated Euler-Lagrange
equation:

−(αvs)s + (βvss)ss − (Tvsss)sss + (Fvssss)ssss

+∇Eimage(v) + ∇Econstrain(v) = 0 (3)

(v(0), vs(0), v(1) and vss(1) are known.)

Here,vs(s), vss(s), vsss(s) and vssss(s) denote
derivatives of v(s), α(s), β(s), T (s) and F (s) are
the weights of vs(s), vss(s), vsss(s) and vssss(s)
respectively, one can control the importance of
vs(s), vss(s), vsss(s) and vssss(s) by adjusting
the weights α(s), β(s), T (s) and F (s). Eimage

refers to the image energy which correspond to the
desired attributes and Econstrain is the external
constraint force. In practice, we always give
a weight to the image force and external force
respectively, thus equation (3) becomes:

−(αvs)s + (βvss)ss − (Tvsss)sss + (Fvssss)ssss

+κ∇Eimage(v) + κp∇Econstrain(v) = 0 (4)

A solution can be seen either as realizing the equi-
librium of the forces in the equation (4) or reaching
the minimum of the energy (1).

2.2 Numerical solution

Assume f(v) = κ∇Eimage(v) + κp∇Econstrain(v),
then (4) becomes:

−(αvs)s + (βvss)ss − (Tvsss)sss

+(Fvssss)ssss + f(v) = 0 (5)

Using the finite difference method approximate
the derivatives of v, assume the special distance
is equal to 1 constantly, then the left terms of (5)
can be expressed as:

(αvs)s = +αi+1(vi+1 − vi) − αi(vi − vi−1)
= +α(vi+1 − 2vi + vi−1) for α constant

(βvss)ss = +βi+1(vi+2 + vi − 2vi+1)
−2βi(vi+1 + vi−1 − 2vi)
+βi−1(vi−2 + vi − 2vi−1)

= +β(vi−2 − 4vi−1 + 6vi − 4vi+1 + vi+2)
for β constant

(Tvsss)sss = +Ti+2(vi+3 − 3vi+2 + 3vi+1 − vi)
−3Ti+1(vi+2 − 3vi+1 + 3vi − vi−1)
+3Ti(vi+1 − 3vi + 3vi−1 − vi−2)
−Ti−1(vi − 3vi−1 + 3vi−2 − vi−3)

= T (vi−3 − 6vi−2 + 15vi−1 − 20vi

+15vi+1 − 6vi+2 + vi+3)
for T constant

(Fvssss)ssss = +Fi+2(vi+4 − 4vi+3 + 6vi+2 − 4vi+1 + vi)
−4Fi+1(vi+3 − 4vi+2 + 6vi+1 − 4vi + vi−1)
+6Fi(vi+2 − 4vi+1 + 6vi − 4vi−1 + vi−2)
−4Fi−1(vi+1 − 4vi + 6vi−1 − 4vi−2 + vi−3)
+Fi−2(vi − 4vi−1 + 6vi−2 − 4vi−3 + vi−4)

= F (vi−4 − 8vi−3 + 28vi−2 − 56vi−1 + 70vi

−56vi+1 + 28vi+2 − 8vi+3 + vi+4)
for F constant

Thus (5) can be written in matrix form:

AV + f = 0

Where A is a quasi nona-diagonal circulant Toepliz
matrix:
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The nine ai weights are derived from the above
equations:

a =





























F

−T − 8F

β + 6T + 28F

−α − 4β − 15T − 56F

2α + 6β + 20T + 70F

−α − 4β − 15T − 56F

β + 6T + 28F

−T − 8F

F





























V and f denote the vector of the locii and forces
of the snake points.

As explained in[1], to solve equation 5, the right-
hand side of the equation is set equal to the product
of a time step size and the negative time derivatives
of the left-hand sides. For simplicity, assume f is
constant during a time step, leading to an explicit
Euler method with respect to the external force.
Because the matrix A completely specified the in-
ternal forces, we can evaluate the time derivative at
time t rather than time t-1 and consequently arrive
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at an implicit Euler step for the internal forces.
The resulting equation is:

AVt + ft−1 = −γ(Vt − Vt−1) (6)

Equation (6) can be solved by matrix inversion:

Vt = (A + γI)−1(Vt−1 − ft−1) (7)

Note that the matrix of equation (7) needs to be
inverted once if the smoothness parameters are set
constant through the snake temporal evolution.
This can be achieved via a LU decomposition
scheme in O(n) time [6],[7] or through the direct
computation of its coefficients [8].

3 Experimental tests

In equation (4) each term appears as a force
applied to the snake. The first four terms are
the internal forces namely the first, second, third
and fourth order Tikhonov smoothness force
terms where α(s), β(s), T (s) and F (s) are their
associated weights.

In order to examine the influence of the high order
smoothness parameters, two groups of experiments
are conducted, using different images, different dis-
tances between the snake discrete points. The first
group use a 64*64 U shape binary image [9], the
snake is manually initialized as a square around
the desired feature, the distance between the snake
points is set to 2, the weight of the image force is set
to 1. Another group uses a 128*128 synthetic lip
colour image, manual initialization, the distance
between the snake points is set to 3, the weight of
the image force is set to 0.5;. In both group, the
time step is set to 1 and the image force is adapted
from the GVF model.
The parameters used in both group are shown in
Table 1 and Table 2 respectively. Note that a
study of each parameter’s separate influence, over
an order of magnitude, on the active contour con-
vergence was conducted beforehand but cannot be
described here for lack of space.

The first two images of Figure1 show the snake
convergence using only α and β coefficients. The
snake almost converges towards the deep concave
regions of the U-shape.

Once the third term is added, the final snake con-
vergence towards the concave region is improved,
as shown in the last two images of Figure1.

From the first two images of Figure2, it can be seen
that the fourth order smoothing term can play a
similar role as the third term did previously. The
last two images of Figure2 shows that the third

Figure 1: Leftmost: final snake using the para-
meters in the first row of Table 1; next: zoom in
of the concave area; next: final snake using the
parameters in the second row of Table 1; rightmost:
zoom in of the concave area.

Figure 2: Leftmost: final snake with the parame-
ters in the third row of Table 1; next: zoom in
of the concave area; next: final snake using the
parameters in the fourth row of Table 1; rightmost:
zoom in of the concave area.

and fourth order smoothing applied together may
achieve a better convergence.

The results corresponding to the parameters listed
in Table 2 are shown in Figure 3. Two sections
of the critical area of lip contours are zoomed in
right column. One is the lower part of the Cupidon
arch (up cell), the other is the mouth left corner
(bottom cell).

According to the topology of the lip image, the
extracted contour should be symmetric, the line
between the two middle points of the final snake
should be parallel to the image edge; Regarding
the left corner of the lip, because it links the upper
and lower lips, the snake in this area should be
smoothed. It can be seen in Figure 3 that the
active contour achieves a better convergence when
the higher smoothness terms are added.

From the experiments in this group, it can be ob-
served that the third and fourth order parameters
can help achieve a convergence closer to the de-
sired feature. Weights T and F may control micro
adjustment of the smoothness and convergence.

4 Conclusion

We have seen that the four smoothing terms con-
trol the snake in different way: the first order term
imposes the elasticity to the snake, all the others
including the second, the third and the fourth or-
der terms impose the curvatureness of the snake.
Because the third and the fourth order terms may
provide micro-adjustment of the curvature control
they may play an important role in optimal conver-
gence of the active contour. However they do incur
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Table 1: Parameters used in the group using the U shape binary image.

1 α = 0.01, β = 0.1, T = 0, F = 0, iter = 250
2 α = 0.01, β = 0.1, T = 0.5, F = 0, iter = 250
3 α = 0.01, β = 0.1, T = 0, F = 1, iter = 75
4 α = 0.01, β = 0.1, T = 0.1, F = 1, iter = 75

Table 2: Parameters used in the group using the lip image.

1 α = 0.1, β = 0, T = 0, F = 0, iter = 250
2 α = 0.1, β = 0.2, T = 0, F = 0, iter = 250
3 α = 0.1, β = 0.2, T = 1, F =, iter = 75
4 α = 0.1, β = 0.2, T = 1, F = 1, iter = 75

Figure 3: Left: Snake convergence results using the
parameters in the corresponding rows of Table 2;
Right: top: the magnified Cupidon arch region;
bottom: the magnified left corner area of the lip.

more complex stiffness matrix computation hence
slowing down slightly the convergence process.

The present study has some implications. Theoret-
ically a variety of higher order Tikhonov smooth
terms could be developed to improve the snake
control. In practice various internal forces could
be chosen to improve the convergence depending
on the topology of the desired feature and the im-
age features characteristics. We are currently con-
ducting studies to derive an optimal selection of
Tikhonov smoothing terms weights on test images.
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