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Abstract

In this paper, we show that we can improve accuracies

of 3-D reconstructions with uncalibrated stereo by clas-

sifying correspondences between two images. After ob-

taining initial correspondences by an automatic match-

ing program, we classify the correspondences into inliers

and outliers in a multi-dimensional feature space. For

doing this, we introduce four quantities with respect to

a corresponding pair and adopt EM algorithm and one-

class SVM with a special kernel fitted to their charac-

teristics. By real image examples, we show that we can

improve the accuracies of 3-D reconstructions by classi-

fying correspondences.

1 Introduction

3-D reconstruction using uncalibrated stereo can
be applied to various fields in real world. For re-
constructing 3-D structure from two images taken
by such an uncalibrated stereo, we must first find
corresponding pairs between the two images. We
then compute the fundamental matrix from the cor-
responding pairs. Finally, we reconstruct the 3-D
shape of the scene using the camera parameters com-
puted by decomposing the fundamental matrix [4, 6].
However, the reconstructed shape is very sensitive
to the error of the fundamental matrix. In addition,
the error causes the failure in decomposing the fun-
damental matrix into the camera parameters even
if the configuration of the cameras is not degener-
ate [4, 11]. Such error is mainly caused by mis-
matches in the correspondences. Except to make
correspondences by hand, we cannot avoid includ-
ing mismatches in the obtained correspondences by
using any automatic matching programs [5, 7, 13].
Unfortunately, there are some mismatches that sat-
isfy the epipolar equation in the specified degree. So,
we cannot remove them completely by usual outlier
detection, such as RANSAC [1] and LMedS [9].

In this paper, for improving accuracy of 3-D re-
construction with an uncalibrated stereo, we pro-
pose to distinguish the mismatches, which we call
outliers, from initial correspondences in a multi-

dimensional feature space using classifiers. Since
there are various scenes and camera configurations,
we cannot prepare any training data to distinguish
them. Therefore, we introduce four features with
respect to a correspondence and we apply EM al-
gorithm and one-class SVM with a special kernel to
remove outliers. We show that we can improve the
accuracy of the 3-D reconstruction by classifying cor-
respondences by real image examples.

2 One-class Support Vector Machine

The one-class support vector machine (SVM) has
been proposed by Schölkopf et al.[10]. It is well
known as a classification method without any train-
ing data. This classifier maps the data into a feature
space and separates them from the origin with the
maximum margin in the feature space.

Let y be an input data and w be the parameters
of the hyperplane which separates outliers from data.
We consider the following decision function

f(y) = sign(w�Φ(y) − ρ). (1)

Here, the scalar ρ indicates the distance from the
origin to the hyperplane. The function sign(x) is
the signum: if x ≥ 0 return 1, otherwise return 0.
The function Φ(y) is a non linear function that maps
the data into a feature space. In order to obtain the
parameters w and ρ, we must solve the following
minimization:

min
w,ξ,ρ

1

2
‖w‖2 +

1

νN

N
∑

i=1

ξi − ρ, (2)

with the constraints

w�Φ(yi) ≥ ρ − ξi, ξi ≥ 0, (3)

where N is the number of the input data, ξi, i = 1,
..., N are non-zero slack variables, and ν is a fraction
of the outliers in the data.

By using Lagrange multiplier technique, the min-
imization can be rewritten by

min
α

1

2
αiαjK(yi,yj), (4)
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subject to

0 ≤ αi ≤
1

νN
,

N
∑

i=1

αi = 1. (5)

Here, K(yi, yj) is a positive semi-definite function
defined by

K(yi, yj) = Φ(yi)
�Φ(yj), (6)

which is called a kernel. In many applications [2, 8,
10], the following radial basis function is often used:

K(yi,yj) = exp

(

−
‖yi − yj‖

2

2σ2

)

, (7)

which is called Gaussian kernel. By using the kernel
(6), we can obtain

f(y) = sign

(

N
∑

i=1

αiK(yi, y) − ρ

)

, (8)

where

ρ =

N
∑

j=1

αjK(yj , yi). (9)

If we know or set the fraction of the outliers ν

in advance, we can compute the parameters αi from
input data by an optimization method without any
training data set [10].

3 Proposed One-class SVM

In order to judge whether a correspondence is
correct or not, the only constraint is the epipolar
equation. However, since the epipolar constraint is
not a sufficient condition but a necessary condition,
some outliers are satisfy the epipolar constraint. In
this paper, we try to distinguish such outliers from
the correspondences in a multi-dimensional feature
space. To do this, we first define four features about
a correspondence and then define a special kernel
fitted to their characteristics for one-class SVM.

Let P and P ′ be the feature points in the images
I and I ′, respectively. We regard the pair {Pi, P

′
i} is

the i-th (temporary) corresponding pair obtained by
an automatic matching program. We denote these
points by

xi = (xi, yi, 1)�, x′
i = (x′

i, y
′
i, 1)�, (10)

where (xi, yi) and (x′
i, y

′
i) are their image coordinates

of Pi and P ′
i , respectively.

3.1 Feature Vector

Now, we define a feature vector yi of the i-th
corresponding pair {Pi, P

′
i} by

yi = (di, ai, ci, ei)
�. (11)

We illustrate these features in detail in the following.

3.1.1 Average Local Depth: di

Since outliers in correspondences are often recon-
structed as thorns from their neighbors [12], we
should find and remove such thorns from the re-
constructed 3-D shape. In this paper, we find the
thorns from the projectively reconstructed shape,
which need not decompose the fundamental matrix.

Let pi = (p1
i , p

2
i , p

3
i )

� be the projectively recon-
structed point from the pair {Pi, P

′
i}. We define an

average local depth of the i-th corresponding pair
{Pi, P

′
i} from its neighbors by

di =
1

L

∑

j∈N (Pi)

∆ji, ∆ji = p3
j − p3

i , (12)

where N (Pi) is the set of the neighbors of Pi and
L is the number of the element of N (Pi). Here,
we construct the relation of the neighborhood by by
Delaunay-triangulation in the first image I.

3.1.2 Angle of the “Flow”: ai

If we superimpose the first image into the second
image, we can obtain the line segments connected
the corresponding pairs. We call these line segments
“flows.” When we rectify the images [12], the flows
between the correct pairs are parallelized to the hor-
izontal axis of the images. So, we use the angle of
the flow to the horizontal axis as measure whether
the correspondence is correct or not.

Let H and H ′ be the homographies to rectify the
images I and I ′, respectively. The flow vector f i is
obtained by

f i = Z[H ′x′
i] − Z[Hxi] = (fx

i , f
y
i , 0)�. (13)

Here, Z[ · ] is a scale normalization to make the third
component 1. Then, we define the angle of the flow
ai by

ai = tan−1

(

f
y
i

fx
i

)

. (14)

In this paper, for rectifying images, we use the
homographies obtained by the method of Sugaya et
al. [12].

3.1.3 Bhattacharyya Coefficient: ci

Correlations or residuals obtained by template
matching are usually used for the first step to es-
tablish point correspondences between two images.
We must not absolutely trust them, because they de-
pend on the positions and the orientations of the two
cameras. However, the pixel values of the local area
around the feature point are important information
for measuring a similarity of a candidate pair. So,
we adopt the Bhattacharyya coefficient between two
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color histograms instead of that of template match-
ing.

Let TPi
and TP ′

i
be the rectangular regions cen-

tered on the point Pi and P ′
i , respectively. We define

a similarity between the color histograms by

ci = 1 −
∑

j

√

Hj(TPi
)H ′

j(TP ′

i
), (15)

where Hj(TPi
) shows the j-th hue values in the his-

togram constructed by the region Tp.

3.1.4 Error of the Epipolar Constraint: ei

As well known, the epipolar equation

(xi, Fx′
i) = 0 (16)

is satisfied if the pair Pi, P
′
i is correct [3]. Here, the

matrix F is rank 2 and is called the fundamental
matrix. In the presence of image noise, the correct
correspondences do not strictly satisfy Eq. (16). So,
we need a threshold to distinguish the outliers from
the correspondences. In this paper, we use the resid-
uals of the epipolar equation as a measure of correct
correspondences:

ei =
(xi,Fx′

i)
√

‖P kFx′
i‖

2 + ‖P kF�xi‖2

(17)

where P k = diag(1, 1, 0) and diag(a, b, c) is the di-
agonal matrix whose diagonal elements are a, b and
c.

3.2 Proposed Kernel

The one-class SVM makes effective use of the fact
that the inliers make a cluster in a feature space and
outliers exists in the surrounding areas of the cluster.
The Gaussian kernel (7) is often used as the kernel
of one-class SVM. However, in our case, we do not
adopt the Gaussian kernel from the two reasons: (1)
the features di, ai, and ei can be regarded as Gaus-
sian (Fig. 1 (a)), but the feature ci is not Gaussian
(Fig. 1 (b)); (2) the scale of the features are very
different in not features but scenes. So we need nor-
malize each feature by some scalings. Therefore, we
propose a new kernel

K(yi, y) = exp
(

−‖V − 1

2 (Pyi − y)‖2
)

, (18)

where, the matrix P is the diagonal matrix defined
by

P = diag(p1, p2, ..., pM ), (19)

and each pl is

pl =

{

1 · · · if yl may be Gaussian,

0 · · · if yl may not be Gaussian.
(20)

OutliersOutliers Inliers
OutliersInliers

(a) (b)

Figure 1: Types of feature distribution of y.

The matrix V
1

2 is

V − 1

2 = diag

(

1

σ1
, · · · ,

1

σM

)

, (21)

where, σl is the standard deviation of yl. In this
paper, for robustness, we use the semi inter-quartile
range (SIQR) instead of the standard deviation.

This proposed kernel is not symmetric, so we can-
not call it “kernel” strictly.

4 Removing outliers by EM algo-

rithm

EM algorithm has been proposed as estimating
unknown parameters from lack of data originally. In
recently, however, it is often used for classifying data
into two classes with no training data.

In this paper, we use the following two functions
that map input data to feature spaces.

f(yi)=
1

N

N
∑

j=1

exp
(

−‖(V − 1

2 (Pyj−yi)‖
2
)

, (22)

g(yi)=
1

N

N
∑

j=1

(

−‖(V − 1

2 (Pyj−yi)‖
2
)

. (23)

Using these mappings, we can apply EM algo-
rithm to distinguish outliers from correspondences.

5 Real Image Examples

Fig. 2 shows an example of a castle scene.
Fig. 2 (a) shows the original images and Fig. 2 (b)
shows the initial correspondences indicated by the
“flow” and their 3-D reconstructions. Here, we ob-
tain the initial correspondences by the method of
Kanazawa and Kanatani [5]. In order to reconstruct
a 3-D structure of the scene, we use the camera pa-
rameters decomposed from the fundamental matrix
by the method of Kanatani and Matsunaga [4]. In
this case, the angle between the two walls should be
90 degrees, but we see the initial 3-D reconstruc-
tion is very distorted. Fig. 2 (c) shows the cor-
respondences obtained by the one-class SVM with
the proposed kernel and their 3-D reconstructions.
Fig. 2 (d) show the results obtained by the one-class
SVM with the “normalized Gaussian kernel”, this
means we use the kernel Eq. (18) without the ma-
trix P . Fig. 2 (e) and (f) show the results obtained
by the EM algorithms with Eq. (22) and Eq. (23),
respectively. We see we can obtain improved 3-D
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(a) (b)

(c) (d)

(e) (f)

Figure 2: (a) Original images. (b) Initial correspondences and
their 3-D reconstructions. (c) Results by one-class SVM with the
proposed kernel (ν = 0.15). (d) Results by one-class SVM the
normalized Gaussian kernel (ν = 0.15). (e) Results by EM algo-
rithm with Eq. (22). (f) Results by EM algorithm with Eq. (23).

(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) Original images. (b) Initial correspondences and
their 3-D reconstructions. (c) One-class SVM with the proposed
kernel (ν = 0.25). (d) One-class SVM with the normalized Gaus-
sian kernel (ν = 0.25). (e) EM algorithm with Eq. (22). (f) EM
algorithm with Eq. (23).

shapes by the one-class SVM with the proposed ker-
nel and the EM algorithm with Eq. (22).

Fig. 3 and Fig. 4 show other two examples of dif-
ferent building scenes. As we have seen in Fig. 2,
we see the one-class SVM with the proposed kernel
is the best among these methods. So, we can see
the proposed non-symmetric kernel is more effective
than the symmetric kernel.

6 Conclusions

In this paper, we have shown that we can improve
the accuracy of 3-D reconstruction with an uncali-
brated stereo by removing outliers from the corre-
sponding pairs using classifiers. We define the four
quantities on each correspondence and adopt some
classifiers in a multi-dimensional feature space. We
have also proposed the new kernel fitted to the fea-
tures of the correspondences for the classifiers.

In real image examples, we have shown that we
can improve the 3-D reconstruction of the scene by
the classifiers. We have also shown the one-class

(a) (b)

(c) (d)

(e) (f)

Figure 4: (a) Original images. (b) Initial correspondences and
their 3-D reconstructions. (c) One-class SVM with the proposed
kernel (ν = 0.2). (d) One-class SVM with the normalized Gaus-
sian kernel (ν = 0.2). (e) EM algorithm with Eq. (22). (f) EM
algorithm with Eq. (23).

SVM with the proposed kernel is robust and stable
compared with the other classification methods.

In future works, we will explore other feature
quantities about correspondences and better kernels.
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